

Linear Power Systems History & applications

Sam Cockerill, CEO Libertine FPE

www.libertine.co.uk

'Free Piston Engine' concept dates back to 1903

LINEAR POWER 2015

Key questions for FPE pioneers:

- Balanced or unbalanced?
- How to synchronise pistons?
- What to do with the power?

Compressors

Junkers air compressors used in mobile and marine applications from 1930s to 1940s

Source: http://www.jsme.or.jp/tsd/ICBTT/conference02/kohama3.html http://www.freikolben.ch/37464/98401.html

Hydraulic pumps

US EPA/FEV (2005)

University of Minnesota (~2013)

Toyohashi University (~2004)

Source: http://www.innas.com/CFPE.html

http://www.mobilehydraulictips.com/ccefp-update-hydraulics-free-piston-engines/

LINEAR POWER 2015

Diesel pile hammers

Pescara/SIGMA gas generator technology was applied in multiple applications during 1950-60s

Marine propulsion (Minesweepers, liberty ships)

Prototype trains & cars

1-30MWe SIGMA power stations (Reims, Corsica, Cherbourg, New Caledonia)

http://utahrails.net/up/fg9.php http://www.freikolben.ch/37464/98443.html

..but 'Free Piston + GT' system efficiency was not competitive and was displaced by technology advances

Initial FPGT applications

Technology drivers

FPGT displaced by

Utility scale power gen

Scale economics & efficiency

CCGT (Gas)

Steam turbines (Coal & nuclear)

Marine propulsion

Efficiency (on marine fuel)

Scale CI-ICE

GT

Train propulsion

Efficiency (on diesel fuel)

Electrification

CI-ICE

Small scale power gen

Fuel, capital and O&M cost ("LCOE")

Packaged CI-ICE

Packaged GT

Stirling engines

Sunpower

Infinia/Qnergy

Source: http://us.sunpowerinc.com/ http://www.qnergy.com/

Stirling coolers

Apex instruments SGC-4000HG

Sunpower Cryotel range

Twinbird SC-TC04 40W

Source: Supplier literature

Encontec free piston pulsed compression reactor

Source: http://www.encontech.nl/papers/PaperLyonWHEC16.pdf

Research & development free piston engines

- Aerodyne Research inc.
- Czech Technical University
- General Motors/Sandia Labs
- German Aerospace Centre
- Lotus/Loughborough University
- Newcastle University
- Pempek
- PETRONAS
- Sussex University (AMOCATIC)
- Toyota Central R&D Labs
- West Virginia University Research Corporation
- Volvo/Stockholm Institute of Technology

• __

Has anything changed?

Free Piston patent publication rate has increased sharply since mid 1990s

Evolution of combustion engine control

2020s 1960s 1970s 1980s 1990s 2000s 2010s Mechanical Analogue Digital Ignition (Distributor) (Via ECU) (EI) Mechanical Analogue Digital Fuelling (Carburetor) (EFI) (Via ECU) Mechanical Variable valve Digital (e-valves, Air (Cam driven valves, turbochargers) lift/timing e-superchargers) **FPE 'digital Motion** Mechanical (Crankshaft) piston motion'

Free piston engine efficiency can deliver a third more power than today's 'best in class' generators

Mechanical transmission of power used to be the norm before electrification

Factories with mechanical transmission equipment in Schaffhausen, ~1880

In cars, mechanical transmission of power persists despite complexity, cost & inefficiency

Input

(Combustion power)

Output

(Shaft power to gearbox, auxiliaries and valvetrain)

So where are all the free piston engines?

Technical challenges have stalled mass adoption

Motion control

Combustion variations

Velocity & position errors

System losses

- Thermodynamics
- Friction
- Sealing
- Electrical machine
- Power conversion

Complexity

 Costly design architectures adopted to solve motion & system loss challenges

Proliferation of 'new engine' concepts

Rand Case Direct Engine Assembly

Fin Figs

Fi

.. and many more

Car companies don't buy new engine concepts

Pre-requisites for mass adoption

- 1. Technology maturity (TRL/MRL)
- 2. Demonstrated performance advantage
- 3. Cost competitive

Technology maturity

Manufacturing Readiness Level (MRL)		
Phase	MRL	State of Development
Phase 3: Production Implementation	9	Full production process qualified for full range of parts and full metrics achieved
	8	Full production process qualified for full range of parts
	7	Capability and rate confirmed
Phase 2: Pre production	6	Process optimised for production rate on production equipment
	5	Basic capability demonstrated
Phase 1: Technology assessment and proving	4	Production validated in lab environment
	3	Experimental proof of concept completed
	2	Application and validity of concept validated or demonstrated
	1	Concept proposed with scientific validation

Technology maturity

TRL 1

Manufacturing Readiness Level (MRL)		
Phase	MRL	State of Development
Phase 3: Production Implementation	9	Full production process qualified for full range of parts and full metrics achieved
	8	Full production process qualified for full range of parts
	7	Capability and rate confirmed
Phase 2: Pre production	6	Process optimised for production rate on production equipment
	5	Basic capability demonstrated
Phase 1: Technology assessment and proving	4	Production validated in lab environment
	3	Experimental proof of concept completed
	2	Application and validity of concept validated or demonstrated
	1	Concept proposed with scientific validation

Low TRL = under-performance, low MRL = high cost

Completing the development journey pre-revenue is too expensive, so technology remains in the lab

Linear e-machines technology is maturing fast

Market opportunities

2015 2020 2025

- 1. Actuators & pumps
- 2. Distributed power FPEs
- 3. High volume
 - Hybrid vehicle FPEs
 - Domestic CHP FPEs
 - Air conditioning & refrigeration
 - Heat pumps

Market opportunities

2015 2020 2025

1. Actuators & pumps

2. Distributed power FPEs

- 3. High volume
 - Hybrid vehicle FPEs
 - Domestic CHP FPEs
 - Air conditioning & refrigeration
 - Heat pumps

Distributed renewables

Economic growth >> grid infrastructure

New fuels

Need for smaller, smarter & more efficient power generators

Emerging market opportunities

LINEAR POWER 2015

General Fusion: The ultimate linear power system?

Linear Power Systems Challenges & opportunities

Sam Cockerill, CEO Libertine FPE

www.libertine.co.uk

Thank you

